
Fermi National Accelerator Laboratory 

FE-FN-592 

Longitudinal Beam Motion Due to Ground Motion 

K.Y. Ng 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

June 1992 

+ Operated by UnfvetiGes Research Asuniation Inc. under Contract No. DE-ACO2-76CH03000 witi the United States Deparb-nent of Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Gouernment nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or fauoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof, 



FN-592 

LONGITUDINAL BEAM MOTION DUE TO GROUND MOTION 

K. Y. Ng 

Fermi Nation Accelerator Laboratory,’ P.O. Box 500, Batavia, IL 60540 

(June 1992) 

*Operated By the Universities Research Association, under contracts with the U.S. Department 
of Energy 



I. Introduction 

The ground motions at the proposed SSC tunnel due to passing trains, quarry 

blasts, or ambient noise have frequencies lower than 10 Hz. On the other hand, the 

synchrotron frequency of the SSC is f8 = 4 Hz. Therefore, the quadrupole motion 

due to ground motions can be in resonance with the synchrotron oscillation leading 

to a continuous growth of the bunch area and thus limiting the lifetime of the beam 

storage. Here, we are going to emphasize perturbations with long correlation time or 

nonrandom and low frequencies. Some of the on-site ground-motion measurements’ 

do show that the waveforms of ground displacement due to train crossing and quarry 

blasts are quite periodic with definite frequencies. The investigation in this note 

follows a preliminary study by Rossbach.’ 

II. The Kick and Equations of Motion 

Assume the horizontal kick A(fm) on a quadrupole of focal length F for the j-th 

turn has the form 

Wm) = 
4.L) 
7 sln(‘J?rv,j + I) , (2.1) 

where v,,, = fm/fo and fm and fu are, respectively, a frequency of the ground motion, 

and the revolution frequency of the storage ring. The phase [ is a parameter of a 

particular ensemble. Since we want the quadrupole to receive a small incremental 

kick when the ground wave arrives, we need to put < = 0, otherwise the first kick the 

quadrupole experience will be proportional to sin[. 

The incremental kick from the (j-l) to j-th turn is 

AOi = 8j - Oj-l , 

leading to a change of orbit length (derivation given in Appendix) 

(2.2) 

AC, = AQ,D , (2.3) 

where D is the horizontal dispersion function at the quadrupole. As a result, the 

synchronous particle will arrive at the rf cavity late by the rf angle 

A& zz 29 = c 2ThDA@ 3, 
Tf 

(2.4) 
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where X,f = C/h is the rf wavelength with C equal to the ideal orbit length and h 

the rf harmonic. In order to understand the mechanism clearly, we want to point out 

that even if the quadrupole experiences the same kick A8j every turn (without any 

turn-by-turn increment), the synchronous particle will always have an orbit length 

longer than the ideal one by AC’, as given by Eq. (2.3); so that the rf phase lag A$j 

given by Eq. (2.4) will accumulate turn by turn in such a way that the total rf phase 

lag will become NA$j in N turns. However, as is shown in the next section, this 

constant kick will not throw the synchronous particle out of the rf bucket, as one 

might naively expect, 

The turn-by-turn equations of motion for the rf phase 4j and fractional energy 

offset 6, at the j-th turn are given by 

!fL = &rqh6,+&, 
dn 
3 
dn (2.5) 

where 7 is the phase-slip parameter, I/ the rf voltage (for a stationary bucket), and 

E the synchronous energy. In the above, the accumulated rf phase lag or mismatch 

due to the kick is 

gj = h Atij = Ffli (2.6) 
i=l 

We want to point out that it is $j and not A$j that enters into the first equation of 

motion. 

IV. Effect of a Constant Kick 

In order to have a clear picture, we first study the situation of a constant turn- 

by-turn kick 8. This just implies a new closed orbit with an extra length AC = BD, 

or for each turn there is an increase in rf phase lag given by 

2rhD 
$-&L (3.1) 

For simplicity, we use time t as the continuous variable. Then the equations of 

motion transform into 

dd 
- = Thwo6+ zqb : 

2 eVlLJo 
-= 
dt --4, 2i~E 
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where wo/27r is the revolution frequency. We want to study the trajectory of the 

synchronous particle. Its initial condition is 4 = li, and 6 = 0 at t = 0 just after 

seeing the first kick. The equations can be easily solved by a Laplace transform. The 

solution is 

4(t) = &/GjGQsinj4 +x) , 

S(t) = & + &&T?Gcos(w.i + x) 1 

where the synchrotron tune is given by 

v, = 

(3.3) 

w, = u,wo, and 

tan2 = 2av, (3.5) 

The trajectory is therefore an ellipse passing through the point (4,s) = ($, 0) with 

center 0’ at 

& = 0 and 6, = -& , (3.6) 

as shown in Figure 1. 

Fig. 1. Trajectory of a particle in an rf bucket, under a constant 

turn-by-turn longitudinal kick. 

3 



In other words, we have a new synchronous center 0’, which is shifted to a lower 

energy. This shift is required so that this lower-energy new synchronous particle has 

a shorter orbit length (without the kick) pl us the lengthening of the orbit (due to the 

kick), which totals up to the original designed ideal orbit length in order that it will 

be exactly in phase with the rf voltage turn by turn. In fact, to decrease the orbit 

length by 

AC=QD, 

the energy required to be lowered, A&, is given by 

7CAJ = AC. 

Combining Eqs. (3.1), (3.7), and (3.8), we get 

(3.7) 

(3.8) 

A&-!!!?= ‘b 
1Ic Gpk: 

which agrees with Eq. (3.6) 

This simple model shows that a cumulative rf phase mismatch will not send the 

particle out of the bucket. The bucket chooses a new synchronous center instead. 

If we have a bunch at the original synchronous center 0, the constant turn-by-turn 

kick will send the bunch to revolve around a new center 0’. The bunch area will only 

increase through smearing due to synchronous tune dependence on amplitude. 

IV. The Periodic Kick 

We now want to solve 

dd - = qhw&+ 
wohDA 

25 

CF sln(w,t) , 

C?VWo 
-= 
dt --4 1 2irE (4.1) 

with the initial condition 4 = & and 6 = So at t = 0. We introduce the new variable 

(4.2) 
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so that the elliptic trajectory becomes circular. Using Laplace transform, we obtain 

the solution 

J(t) = &cosw,t + &sinw,t + f(t) , 

6(t) = -& sinw,t + SO cos w,t + g(t) , 

where the particular solution is given by 

with 

f(t) = Cl2 ycosw,t -cosw,t) , w$ - cd,” w, 
g(t) = -uh~yz zsinw,t - sinw,t) , 

( 

p = 
eVhDAw,2 2?rDAw,2 

ECF = qCF 

(4.3) 

(4.4) 

(4.5) 

V. Discrete Ground-Wave Frequency 

We first consider the situation when the ground-wave frequency fm is discrete 

and is very near to but different from the synchrotron frequency fS. The particular 

solution of Eq. (4.4) can be approximately rewritten as a function of turn number N 

as: 

f(Y = 
$sinr(v,-v,)N 

us urn - us 
sm(2lrvJV) , 

&sin?r(v,,-v,)N 
g(N) = “, 

VA cosn(v,--v,)N 

&I - 4 
cos(27rv,N) - ; 

2v, 
sm(277vJV) ,(5.1) 

where un = O/Q. In complex notation, this is 

(J,~) = aoe-i~nvs~ + ~sinn(u,-v,)Ne-i2.“~N _ &os+~--V,)N sin(2rv,N) 
urn- us u/s 2vs 

(5.2) 
The ao in the first term represents the initial position of the particle (or particles 

forming a bunch). The second term represents the bunch being shifted up and down 

t,he energy axis by the amount 
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With this term, the whole bunch is unchanged in shape and rotating a.t the rate V, 

about the center of the phase space. The third term shifts the center of rot&ion 

upward and downward, which is equivalent to the shift of synchronous center in the 

case of a constant kick discussed in Sect. 3. This term is small compared with the 

second term, which can become very big depending on how close V, and V, are. Since 

D x ?C, we have from Eqs. (4.5) and (5.3) 

A&% fs 
F Ifm-fsl 

= 1.56 x lo-’ , (5.4) 

if we take A = 0.05 p, F = 80.8 m, fs = 4 Hz, and Ifm - fsl = 0.1 Hz. The 

corresponding shift in rf phase is, from Eq. (4.2), 

A4 = $A6 = 1.54 x 10m3 rad , (5.5) 

where we have taken 11 = 1.1 x 10e4, and h = 1.05 x 10’. For n = 1000 quadrupoles 

kicking independently by the ground wave, we need to multiply the results of Eqs. (5.4) 

and (5.5) by J;;. This gives A$ = 0.049 rad, which is still very small. We see that the 

periodic kicking just introduces more complicated motion inside the bucket: besides 

moving the center of rotation, the whole bunch is shifted upwards and downwards. 

However, coherent motion will not throw that particle outside the bucket. It requires 

synchrotron tune dependence on amplitude to smear out the phase space and lead to 

eventual filling up the whole bucket. 

Of course, if the driving discrete frequency is right at w, = w,, the shifting of the 

particle in Eqs. (5.1) and (5.2) will be directly proportional to the turn number N, 

implying that the particle will be thrown out of the rf bucket in a matter of time. 

However, this situation is very unlikely, because the general ground motion has a 

continuous spectrum. Even if there is a discrete driving force, it is hard to imagine 

how its frequency will be locked on to the synchrotron frequency. 

VI. Continuous Ground-Wave Frequency 

The ground waves that were measured have a continuous spectrum of narrow 

width but covering the synchrotron frequency of fa = 4 Hz. If we denote the spectral 

distribution by p(wm) which is normalized to 

J Om l4+LwJ?n = 1 , (6.1) 
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the convolutions with f (w,) and g(wm) give 

f(N) a gp(w.)sin2=VaN , 
B 

g(N) = 
dP 
g44 cos 2av,N , 

s 

or in complex notation, 

(f(N),g(N)) e i$~,)e-~~~~~~ 
Q 

In the above, the kick amplitude A(w,) at one discrete frequency in the definition 

of Qz should be replaced by the total kick amplitude integrated over the normalized 

spectral density I. Also we have assumed that the poles of p(wm) in the complex 

w,-plane are far away from the poles at fw,, so that their contributions can be 

neglected. Equation (6.3) is very similar to the second term in Eq. (5.2). However, 

there is no more periodic shifting motion, because the driving force now comprises 

many frequencies which average out to a fixed shift. There is also no more small 

denominator even if @(urn) peaks at w,, because for a continuous spectrum the amount 

of driving force right at resonance is of measure zero. 

Unfortunately, only the power spectra of the ground waves had been measured. 

However, if we assume p(wm) to be Gaussian-like, peaked at w, with a spread c, z 

27r x 0.1 Hz, we obtain the shift in, respectively, fractional energy and rf phase for 

the effect of one quadrupole, 

&= A w 
As w --A = 3.90 x IO-’ , 

21i2 F CT, 

Ad x $A& = 3.88 x 1O-3 rad (6.4) 

The total integrated kick is assumed to be A = 0.05 p, These values are to be 

compared with those in Eqs. (5.4) and (5.5). (The actual spectrum due to a quarry 

blast peaks at 3 Hz with a width N 1 Hz.) 

VII. Conclusion 

We have studied the effect of ground waves on the longitudinal motion of a bunch 

assuming that the synchrotron frequency does not have any spread. We showed that 
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the rf phase mismatch due to ground-wave kick on the quadrupole does not add up 

so as to throw the particles or bunch outside the rf bucket, except in the unlikely case 

of a discrete-frequency ground-wave kick right at exactly the synchrotron frequency. 

The shifting of the bunch inside the bucket was found to be very small. Any increase 

in bunch area has to come from the spread of synchrotron frequency. 

The above treatment does not apply to the random motion of the ground. In that, 

situation, the random kicks can be in resonance with synchrotron oscillation. 

The synchrotron frequency is not unique. It decreases as the oscillation amplitude 

increases. As a result, the response due to a kick of any frequency will not lead to 

infinite growth in amplitude. If the particle is originally at the center of the rf bucket,, 

a kick at the base synchrotron frequency (or at any frequency nearby) will only drive 

the particle into oscillation with a finite amplitude. This problem will be discussed 

elsewhere. 
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Appendix 

The closed-orbit offset ~(4) at Floquet phase advance $J (which runs from 0 to 2~ 

around the ring) due to a kick AZ’ at phase advance $0 is given by 

4G) = 2s~&J~c0s(II - ~kb~~)~~ , 
where up is the betatron tune. The change in orbit length is therefore 

AC=~‘“~(IJ = J p(~,) dti)P(ti) vod$ , 
O-2 

AC = Ax’ 
“0 8(h) 7 JzT dg,i3;;;:) 
2sin7rvg 0 

cos(n - I$-$G& = As’D($,,) : 

where D(&,) is just the periodic solution of the equation 

and is therefore the dispersion function at phase advance $,,. 
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